If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+30x-65=0
a = 2; b = 30; c = -65;
Δ = b2-4ac
Δ = 302-4·2·(-65)
Δ = 1420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1420}=\sqrt{4*355}=\sqrt{4}*\sqrt{355}=2\sqrt{355}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{355}}{2*2}=\frac{-30-2\sqrt{355}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{355}}{2*2}=\frac{-30+2\sqrt{355}}{4} $
| 5=95x | | 8=140x | | (1+5x)(x-3)=0 | | 22/5x+31/7=10 | | -6x+2+4x=-12 | | a=-40+1/4 | | 21=p-2 | | T^2-4t-4=1000000 | | 140=8x | | 9=7x+3-8 | | 5×21-20+4y-5×21=180 | | 8x+11=6x+45 | | 9m=0117 | | c+-6=19 | | 2x–12=–15 | | 3(u-8)-6u=6 | | 4(t+41)=3 | | 5+8r+4r=-19 | | y=31/4 | | 2/y=20/50 | | u/9=4u= | | 150=4x+2 | | 4p/5-20=-28 | | -14n-28+5=-107 | | 8(35)+8c=280 | | 2-2g=3/4g+13 | | 8w=2800w= | | 8(3)+8c=280 | | 4.5x-2(x+6)=28 | | 78=h+26 | | z/8+1=5 | | 4.5x-2(x+6)=27 |